Multimodal Behavior Analysis in the Wild: Advances and Challenges (Computer Vision and Pattern Recognition)
暫譯: 野外多模態行為分析:進展與挑戰(計算機視覺與模式識別)

  • 出版商: Academic Press
  • 出版日期: 2018-11-16
  • 售價: $6,320
  • 貴賓價: 9.5$6,004
  • 語言: 英文
  • 頁數: 498
  • 裝訂: Paperback
  • ISBN: 012814601X
  • ISBN-13: 9780128146019
  • 相關分類: Computer Vision
  • 海外代購書籍(需單獨結帳)

商品描述

Multimodal Behavioral Analysis in the Wild: Advances and Challenges presents the state-of- the-art in behavioral signal processing using different data modalities, with a special focus on identifying the strengths and limitations of current technologies. The book focuses on audio and video modalities, while also emphasizing emerging modalities, such as accelerometer or proximity data. It covers tasks at different levels of complexity, from low level (speaker detection, sensorimotor links, source separation), through middle level (conversational group detection, addresser and addressee identification), and high level (personality and emotion recognition), providing insights on how to exploit inter-level and intra-level links.

This is a valuable resource on the state-of-the- art and future research challenges of multi-modal behavioral analysis in the wild. It is suitable for researchers and graduate students in the fields of computer vision, audio processing, pattern recognition, machine learning and social signal processing.

  • Gives a comprehensive collection of information on the state-of-the-art, limitations, and challenges associated with extracting behavioral cues from real-world scenarios
  • Presents numerous applications on how different behavioral cues have been successfully extracted from different data sources
  • Provides a wide variety of methodologies used to extract behavioral cues from multi-modal data

商品描述(中文翻譯)

野外的多模態行為分析:進展與挑戰》介紹了使用不同數據模態的行為信號處理的最新技術,特別著重於識別當前技術的優勢和限制。該書專注於音頻和視頻模態,同時強調新興模態,如加速度計或接近數據。它涵蓋了不同複雜度的任務,從低層次(說話者檢測、感知運動鏈接、源分離),到中層次(對話群體檢測、發話者和聽話者識別),再到高層次(個性和情感識別),提供了如何利用層間和層內鏈接的見解。

這是一本關於野外多模態行為分析的最新技術和未來研究挑戰的寶貴資源。適合計算機視覺、音頻處理、模式識別、機器學習和社會信號處理領域的研究人員和研究生。

- 提供有關從現實世界場景中提取行為線索的最新技術、限制和挑戰的全面信息集合
- 展示了如何成功地從不同數據來源提取不同的行為線索的眾多應用
- 提供了用於從多模態數據中提取行為線索的各種方法學