Computational Non-coding RNA Biology
暫譯: 計算非編碼RNA生物學
Yun Zheng
- 出版商: Academic Press
- 出版日期: 2018-09-19
- 售價: $5,470
- 貴賓價: 9.5 折 $5,197
- 語言: 英文
- 頁數: 320
- 裝訂: Paperback
- ISBN: 0128143657
- ISBN-13: 9780128143650
海外代購書籍(需單獨結帳)
相關主題
商品描述
Computational Non-coding RNA Biology is a resource for the computation of non-coding RNAs. The book covers computational methods for the identification and quantification of non-coding RNAs, including miRNAs, tasiRNAs, phasiRNAs, lariat originated circRNAs and back-spliced circRNAs, the identification of miRNA/siRNA targets, and the identification of mutations and editing sites in miRNAs. The book introduces basic ideas of computational methods, along with their detailed computational steps, a critical component in the development of high throughput sequencing technologies for identifying different classes of non-coding RNAs and predicting the possible functions of these molecules.
Finding, quantifying, and visualizing non-coding RNAs from high throughput sequencing datasets at high volume is complex. Therefore, it is usually possible for biologists to complete all of the necessary steps for analysis.
- Presents a comprehensive resource of computational methods for the identification and quantification of non-coding RNAs
- Introduces 23 practical computational pipelines for various topics of non-coding RNAs
- Provides a guide to assist biologists and other researchers dealing with complex datasets
- Introduces basic computational methods and provides guidelines for their replication by researchers
- Offers a solution to researchers approaching large and complex sequencing datasets
商品描述(中文翻譯)
《計算非編碼RNA生物學》是針對非編碼RNA計算的一個資源。本書涵蓋了識別和量化非編碼RNA的計算方法,包括miRNA、tasiRNA、phasiRNA、環狀RNA(circRNA)中的環狀結構和反向拼接的circRNA、miRNA/siRNA目標的識別,以及miRNA中的突變和編輯位點的識別。本書介紹了計算方法的基本概念,並詳細說明了其計算步驟,這是開發高通量測序技術以識別不同類別的非編碼RNA並預測這些分子的可能功能的重要組成部分。
從高通量測序數據集中找到、量化和可視化非編碼RNA的過程是複雜的。因此,生物學家通常無法完成所有必要的分析步驟。
- 提供了全面的計算方法資源,用於識別和量化非編碼RNA
- 介紹了23個針對各種非編碼RNA主題的實用計算流程
- 提供指導,幫助生物學家和其他研究人員處理複雜的數據集
- 介紹基本的計算方法,並提供研究人員複製這些方法的指導
- 為面對大型和複雜測序數據集的研究人員提供解決方案