Deep Learning Through Sparse and Low-Rank Modeling
暫譯: 透過稀疏與低秩建模的深度學習
Wang, Zhangyang, Fu, Yun, Huang, Thomas S.
- 出版商: Academic Press
- 出版日期: 2019-04-12
- 售價: $3,760
- 貴賓價: 9.5 折 $3,572
- 語言: 英文
- 頁數: 296
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0128136596
- ISBN-13: 9780128136591
-
相關分類:
DeepLearning
-
相關翻譯:
深度學習:基於稀疏和低秩模型 (簡中版)
商品描述
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models--those that emphasize problem-specific Interpretability--with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining.
This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
- Combines classical sparse and low-rank models and algorithms with the latest advances in deep learning networks
- Shows how the structure and algorithms of sparse and low-rank methods improves the performance and interpretability of Deep Learning models
- Provides tactics on how to build and apply customized deep learning models for various applications
商品描述(中文翻譯)
《透過稀疏表示與低秩建模的深度學習》將傳統的稀疏與低秩模型——這些模型強調特定問題的可解釋性——與最近的深度網絡模型相結合,後者使得更大的學習能力和更好的大數據利用成為可能。它展示了深度學習工具包如何與稀疏/低秩方法和算法緊密相連,提供了豐富的理論和分析工具,以指導深度學習模型的設計和解釋。理論和模型的發展得到了計算機視覺、機器學習、信號處理和數據挖掘等多種應用的支持。
本書對於從事計算機視覺、機器學習、信號處理、優化和統計等領域的研究人員、研究生和實務工作者將非常有用。
- 結合傳統的稀疏和低秩模型及算法與最新的深度學習網絡進展
- 展示稀疏和低秩方法的結構和算法如何改善深度學習模型的性能和可解釋性
- 提供如何為各種應用構建和應用定制深度學習模型的策略