Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications (Computer Vision and Pattern Recognition)
暫譯: 視覺分析中的低秩模型:理論、演算法與應用(計算機視覺與模式識別)

Zhouchen Lin, Hongyang Zhang

相關主題

商品描述

Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alignment and rectification, motion segmentation, image segmentation and image saliency detection. Readers will learn which Low-rank models are highly useful in practice (both linear and nonlinear models), how to solve low-rank models efficiently, and how to apply low-rank models to real problems.

  • Presents a self-contained, up-to-date introduction that covers underlying theory, algorithms and the state-of-the-art in current applications
  • Provides a full and clear explanation of the theory behind the models
  • Includes detailed proofs in the appendices

商品描述(中文翻譯)

《視覺分析中的低秩模型:理論、演算法與應用》介紹了低秩模型及其在視覺分析中的應用的最新進展。它深入探討了模型及其演算法背後的理念,詳細說明了其公式化和推導過程。主要應用包括視頻去噪、背景建模、圖像對齊與校正、運動分割、圖像分割和圖像顯著性檢測。讀者將學習哪些低秩模型在實踐中非常有用(包括線性和非線性模型)、如何高效地解決低秩模型,以及如何將低秩模型應用於實際問題。

- 提供一個自成體系、最新的介紹,涵蓋基礎理論、演算法及當前應用的最新進展
- 清晰完整地解釋模型背後的理論
- 附錄中包含詳細的證明