Entity Information Life Cycle for Big Data: Master Data Management and Information Integration (Paperback)
John R. Talburt, Yinle Zhou
- 出版商: Morgan Kaufmann
- 出版日期: 2015-04-23
- 售價: $2,240
- 貴賓價: 9.5 折 $2,128
- 語言: 英文
- 頁數: 254
- 裝訂: Paperback
- ISBN: 0128005378
- ISBN-13: 9780128005378
-
相關分類:
大數據 Big-data
立即出貨 (庫存=1)
相關主題
商品描述
Entity Information Life Cycle for Big Data walks you through the ins and outs of managing entity information so you can successfully achieve master data management (MDM) in the era of big data. This book explains big data’s impact on MDM and the critical role of entity information management system (EIMS) in successful MDM. Expert authors Dr. John R. Talburt and Dr. Yinle Zhou provide a thorough background in the principles of managing the entity information life cycle and provide practical tips and techniques for implementing an EIMS, strategies for exploiting distributed processing to handle big data for EIMS, and examples from real applications. Additional material on the theory of EIIM and methods for assessing and evaluating EIMS performance also make this book appropriate for use as a textbook in courses on entity and identity management, data management, customer relationship management (CRM), and related topics.
- Explains the business value and impact of entity information management system (EIMS) and directly addresses the problem of EIMS design and operation, a critical issue organizations face when implementing MDM systems
- Offers practical guidance to help you design and build an EIM system that will successfully handle big data
- Details how to measure and evaluate entity integrity in MDM systems and explains the principles and processes that comprise EIM
- Provides an understanding of features and functions an EIM system should have that will assist in evaluating commercial EIM systems
- Includes chapter review questions, exercises, tips, and free downloads of demonstrations that use the OYSTER open source EIM system
- Executable code (Java .jar files), control scripts, and synthetic input data illustrate various aspects of CSRUD life cycle such as identity capture, identity update, and assertions
商品描述(中文翻譯)
《大數據實體信息生命周期管理》一書詳細介紹了如何在大數據時代成功實現主數據管理(MDM),並深入探討了實體信息管理系統(EIMS)在MDM中的關鍵作用。作者John R. Talburt博士和Yinle Zhou博士專業地介紹了管理實體信息生命周期的原則,並提供了實施EIMS的實用技巧和方法,以及利用分散處理處理大數據的策略和真實應用案例。此外,本書還包括有關EIIM理論、評估和評價EIMS性能的方法,適合作為實體和身份管理、數據管理、客戶關係管理(CRM)等課程的教材。
本書的主要內容包括:
- 解釋了實體信息管理系統(EIMS)的商業價值和影響,並直接解決了組織在實施MDM系統時面臨的EIMS設計和運營問題。
- 提供實用指南,幫助您設計和構建一個能夠成功處理大數據的EIM系統。
- 詳細介紹了如何在MDM系統中測量和評估實體完整性,並解釋了構成EIM的原則和流程。
- 提供了對商業EIM系統進行評估時應具備的功能和特性的理解。
- 包括章節復習問題、練習題、技巧以及使用OYSTER開源EIM系統的免費示範下載。
- 可執行代碼(Java .jar文件)、控制腳本和合成輸入數據展示了CSRUD生命周期的各個方面,如身份捕獲、身份更新和斷言。