Implementing Analytics: A Blueprint for Design, Development, and Adoption (Paperback)
暫譯: 實施分析:設計、開發與採用的藍圖 (平裝本)
Nauman Sheikh
- 出版商: Morgan Kaufmann
- 出版日期: 2013-05-30
- 定價: $1,600
- 售價: 8.5 折 $1,360
- 語言: 英文
- 頁數: 234
- 裝訂: Paperback
- ISBN: 0124016960
- ISBN-13: 9780124016965
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$880$695 -
$250$198 -
$250$198 -
$750$638 -
$650$514 -
$580$458 -
$1,130$893 -
$580$458 -
$450$383 -
$940$700 -
$490$382 -
$680$537 -
$480$379 -
$580$493 -
$650$514 -
$1,418Theory of Fun for Game Design, 2/e (Paperback)
-
$520$411 -
$480$379 -
$500$390 -
$480$379 -
$499$394 -
$580$458 -
$580$458 -
$650$514 -
$580$493
商品描述
Implementing Analytics demystifies the concept, technology and application of analytics and breaks its implementation down to repeatable and manageable steps, making it possible for widespread adoption across all functions of an organization. Implementing Analytics simplifies and helps democratize a very specialized discipline to foster business efficiency and innovation without investing in multi-million dollar technology and manpower. A technology agnostic methodology that breaks down complex tasks like model design and tuning and emphasizes business decisions rather than the technology behind analytics.
-
Simplifies the understanding of analytics from a technical and functional perspective and shows a wide array of problems that can be tackled using existing technology
-
Provides a detailed step by step approach to identify opportunities, extract requirements, design variables and build and test models. It further explains the business decision strategies to use analytics models and provides an overview for governance and tuning
-
Helps formalize analytics projects from staffing, technology and implementation perspectives
-
Emphasizes machine learning and data mining over statistics and shows how the role of a Data Scientist can be broken down and still deliver the value by building a robust development process
商品描述(中文翻譯)
《實施分析》揭開了分析的概念、技術和應用的神秘面紗,並將其實施分解為可重複和可管理的步驟,使其能夠在組織的所有功能中廣泛採用。《實施分析》簡化並幫助民主化這一非常專業的學科,以促進商業效率和創新,而無需投資數百萬美元的技術和人力。這是一種與技術無關的方法論,將複雜的任務如模型設計和調整進行分解,並強調商業決策而非分析背後的技術。
- 從技術和功能的角度簡化對分析的理解,並展示可以使用現有技術解決的各種問題。
- 提供詳細的逐步方法來識別機會、提取需求、設計變數以及構建和測試模型。進一步解釋使用分析模型的商業決策策略,並提供治理和調整的概述。
- 幫助從人員配置、技術和實施的角度正式化分析項目。
- 強調機器學習和數據挖掘而非統計,並展示數據科學家的角色如何被分解,仍然能通過建立穩健的開發流程來提供價值。