Implementing Analytics: A Blueprint for Design, Development, and Adoption (Paperback) (實施分析:設計、開發與採用的藍圖)
Nauman Sheikh
- 出版商: Morgan Kaufmann
- 出版日期: 2013-05-30
- 定價: $1,600
- 售價: 8.5 折 $1,360
- 語言: 英文
- 頁數: 234
- 裝訂: Paperback
- ISBN: 0124016960
- ISBN-13: 9780124016965
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$880$695 -
$250$198 -
$250$213 -
$750$593 -
$650$553 -
$580$458 -
$1,130$961 -
$580$458 -
$450$383 -
$940$700 -
$490$382 -
$680$537 -
$480$379 -
$580$493 -
$650$514 -
$1,418Theory of Fun for Game Design, 2/e (Paperback)
-
$520$411 -
$480$379 -
$500$390 -
$480$408 -
$499$424 -
$580$458 -
$580$458 -
$650$514 -
$580$493
相關主題
商品描述
Implementing Analytics demystifies the concept, technology and application of analytics and breaks its implementation down to repeatable and manageable steps, making it possible for widespread adoption across all functions of an organization. Implementing Analytics simplifies and helps democratize a very specialized discipline to foster business efficiency and innovation without investing in multi-million dollar technology and manpower. A technology agnostic methodology that breaks down complex tasks like model design and tuning and emphasizes business decisions rather than the technology behind analytics.
-
Simplifies the understanding of analytics from a technical and functional perspective and shows a wide array of problems that can be tackled using existing technology
-
Provides a detailed step by step approach to identify opportunities, extract requirements, design variables and build and test models. It further explains the business decision strategies to use analytics models and provides an overview for governance and tuning
-
Helps formalize analytics projects from staffing, technology and implementation perspectives
-
Emphasizes machine learning and data mining over statistics and shows how the role of a Data Scientist can be broken down and still deliver the value by building a robust development process
商品描述(中文翻譯)
「實施分析」解密了分析的概念、技術和應用,並將其實施分解為可重複和可管理的步驟,使其能夠在組織的所有功能中廣泛應用。 「實施分析」簡化並幫助普及一門非常專業的學科,以促進業務效率和創新,而無需投資數百萬美元的技術和人力資源。這是一種技術不可知的方法論,它將複雜的任務(如模型設計和調整)分解,並強調業務決策,而不是分析背後的技術。
- 簡化了從技術和功能角度理解分析,並展示了使用現有技術可以解決的各種問題
- 提供了詳細的逐步方法,以確定機會,提取需求,設計變量,構建和測試模型。它進一步解釋了使用分析模型的業務決策策略,並提供了治理和調整的概述
- 從人員配置,技術和實施的角度幫助形式化分析項目
- 強調機器學習和數據挖掘而不是統計學,並展示了如何分解數據科學家的角色,並通過構建強大的開發流程來提供價值