Java Data Mining: Strategy, Standard, and Practice: A Practical Guide for architecture, design, and implementation (Java 數據挖掘:策略、標準與實踐:架構、設計與實施的實用指南)
Mark F. Hornick, Erik Marcadé, Sunil Venkayala
- 出版商: Morgan Kaufmann
- 出版日期: 2006-11-01
- 定價: $2,240
- 售價: 8.0 折 $1,792
- 語言: 英文
- 頁數: 544
- 裝訂: Paperback
- ISBN: 0123704529
- ISBN-13: 9780123704528
-
相關分類:
Java 程式語言、Data-mining
立即出貨 (庫存=1)
買這商品的人也買了...
-
$420$328 -
$800$760 -
$620$490 -
$580$493 -
$550$435 -
$450$405 -
$1,250$1,188 -
$750$585 -
$1,140$1,029 -
$780$663 -
$650$507 -
$550$468 -
$350$298 -
$850$765 -
$1,274Data Mining: Concepts and Techniques, 2/e (IE-Paperback)
-
$1,280$1,216 -
$580$493 -
$299$254 -
$850$765 -
$500$395 -
$990$891 -
$600$480 -
$2,450$2,328 -
$350$277 -
$3,130$2,974
相關主題
商品描述
Description
Whether you are a software developer, systems architect, data analyst, or business analyst, if you want to take advantage of data mining in the development of advanced analytic applications, Java Data Mining, JDM, the new standard now implemented in core DBMS and data mining/analysis software, is a key solution component. This book is the essential guide to the usage of the JDM standard interface, written by contributors to the JDM standard.
The book discusses and illustrates how to solve real problems using the JDM API. The authors provide you with:
Data mining introduction—an overview of data mining and the problems it can address across industries; JDM’s place in strategic solutions to data mining-related problems;
JDM essentials—concepts, design approach and design issues, with detailed code examples in Java; a Web Services interface to enable JDM functionality in an SOA environment; and illustration of JDM XML Schema for JDM objects;
JDM in practice—the use of JDM from vendor implementations and approaches to customer applications, integration, and usage; impact of data mining on IT infrastructure; a how-to guide for building applications that use the JDM API.
Free, downloadable KJDM source code referenced in the book available here
Table of Contents
Preface
Guide to Readers
Part I - Strategy
1. Overview of Data Mining
1.1. Why is data mining relevant today?
1.2. Introducing Data Mining
1.3. The Value of Data Mining
1.4. Summary
1.5. References
2. Solving Problems in Industry
2.1. Cross-industry data mining solutions
2.2. Data Mining in Industries
2.3. Summary
2.4. References
3. Data Mining Process
3.1. A standardized data mining process
3.2. Data Analysis and Preparation…a more detailed view
3.3. Data mining modeling, analysis, and scoring processes
3.4. The Role of databases and data warehouses in Data Mining
3.5. Data mining in enterprise software architectures
3.6. Advances in automated data mining
3.7. Summary
3.8. References
4. Mining Functions and Algorithms
4.1. Data mining functions
4.2. Classification
4.3. Regression
4.4. Attribute Importance
4.5. Association
4.6. Clustering
4.7. Summary
4.8. References
5. JDM Strategy
5.1. What is the JDM strategy?
5.2. Role of Standards
5.3. Summary
5.4. References
6. Getting Started
6.1. Business Understanding
6.2. Data Understanding
6.3. Data Preparation
6.4. Modeling
6.5. Evaluation
6.6. Deployment
6.7. Summary
6.8. References
Part II - Standard
7. Java Data Mining Concepts
7.1. Classification problem
7.2. Regression problem
7.3. Attribute importance
7.4. Association rules problem
7.5. Clustering problem
7.6. Summary
7.7. References
8. Design of the JDM API
8.1. Object Modeling of Data Mining Concepts
8.2. Modular Packages
8.3. Connection Architecture
8.4. Object Factories
8.5. URI for Datasets
8.6. Enumerated Types
8.7. Exceptions
8.8. Discovering DME Capabilities
8.9. Summary
8.10. References
9. Using the JDM API
9.1. Connection Interfaces
9.2. Using JDM Enumerations
9.3. Using data specification interfaces
9.4. Using classification interfaces
9.5. Using Regression interfaces
9.6. Using Attribute Importance interfaces
9.7. Using Association interfaces
9.8. Using Clustering interfaces
9.9. Summary
9.10. References
10. XML Schema
10.1. Overview
10.2. Schema Elements
10.3. Schema Types
10.4. Using PMML with the JDM Schema
10.5. Use cases for JDM XML Schema and Documents
10.6. Summary
10.7. References
11. Web Services
11.1. What is a Web Service?
11.2. Service Oriented Architecture (SOA)
11.3. JDM Web Service (JDMWS)
11.4. Enabling JDM Web Services using JAX-RPC
11.5. Summary
11.6. References
Part III - Practice
12. Practical Problem Solving
12.1. Business Scenario 1: Targeted Marketing Campaign
12.2. Business Scenario 2: Understanding Key Factors
12.3. Business Scenario 3: Using Customer Segmentation
12.4. Summary
12.5. Bibliography
13. Building Data Mining Tools using JDM
13.1. Data mining tools
13.2. Administrative Console
13.3. User Interface to build and save a model
13.4. User Interface to test model quality
13.5. Summary
14. Getting Started with JDM Web Services
14.1. A Web Service client in PhP
14.2. A Web Service client in Java
14.3. Summary
14.4. References
15. Impacts on IT Infrastructure
15.1. What does Data Mining require from IT?
15.2. Impacts on computing hardware
15.3. Impacts on data storage hardware
15.4. Data access
15.5. Backup and recovery
15.6. Scheduling
15.7. Workflow
15.8. Summary
15.9. References
16. Vendor implementations
16.1. Oracle Data Mining
16.2. KXEN (Knowledge eXtraction ENgines)
16.3. Process for new Vendors
16.4. Process for new JDM users
16.5. Summary
16.6. References
Part IV. Wrapping Up
17. Evolution of Data Mining Standards
17.1. Data Mining Standards
17.2. Java Community Process
17.3. Why so many standards?
17.4. Where data mining standards have been and where will they go?
17.5. Directions for data mining standards
17.6. Summary
17.7. References
18. Preview of Java Data Mining 2.0
18.1. Transformations
18.2. Time Series
18.3. Apply for Association
18.4. Feature Extraction
18.5. Statistics
18.6. Multi-target Models
18.7. Text Mining
18.8. Summary
18.9. References
19. Summary
App. A. Further Reading
App. B. Glossary
商品描述(中文翻譯)
描述
無論您是軟體開發人員、系統架構師、資料分析師還是業務分析師,如果您想在開發先進的分析應用程式中利用資料探勘,Java Data Mining(JDM)是一個關鍵的解決方案組件。JDM是一個新的標準,現在已經在核心資料庫管理系統和資料探勘/分析軟體中實施。本書是使用JDM標準介面的使用指南,由JDM標準的貢獻者撰寫。
本書討論並說明如何使用JDM API解決實際問題。作者為您提供:
- 資料探勘介紹-資料探勘的概述以及它可以解決的跨行業問題;JDM在解決與資料探勘相關的問題的戰略解決方案中的地位;
- JDM基礎知識-概念、設計方法和設計問題,並提供Java中詳細的程式碼示例;在SOA環境中啟用JDM功能的Web服務介面;以及JDM物件的JDM XML Schema的示例;
- 實踐中的JDM-使用JDM的供應商實現和客戶應用程式的方法、整合和使用;資料探勘對IT基礎設施的影響;使用JDM API構建應用程式的操作指南。
- 可在書中引用的可免費下載的KJDM原始碼,請點擊此處。
目錄
前言
讀者指南
第一部分-策略
1. 資料探勘概述
1.1. 為什麼資料探勘在今天如此重要?
1.2. 介紹資料探勘
1.3. 資料探勘的價值
1.4. 摘要
1.5. 參考文獻
2. 在產業中解決問題
2.1. 跨行業資料探勘解決方案
2.2. 各行業中的資料探勘
2.3. 摘要
2.4. 參考文獻
3. 資料探勘流程
3.1. 標準化的資料探勘流程
3.2. 資料分析和準備...更詳細的觀點
3.3. 資料探勘建模、分析和評分流程
3.4. 資料庫和資料倉庫在資料探勘中的角色
3.5. 企業軟體架構中的資料探勘
3.6. 自動化資料探勘的進展
3.7. 摘要
3.8. 參考文獻
4. 探勘函數和演算法
4.1. 資料探勘函數
4.2. 分類
4.3. 迴歸
4.4. 屬性重要性
4.5. 關聯
4.6. 分群
4.7. 摘要
4.8. 參考文獻
5. JDM策略
5.1. JDM策略是什麼?
5.2. 標準的角色
5.3. 摘要
5.4. 參考文獻
6. 入門
6.1. 商業理解
6.2. 資料理解
6.3. 資料準備
6.4. 建模
6.5. 評估
6.6. 部署
6.7. 摘要
6.8. 參考文獻
第二部分-標準
7. Java資料探勘概念
7.1. 分類問題
7.2. 迴歸問題
7.3. 屬性重要性
7.4. 關聯規則問題
7.5. 分群問題
7.6. 摘要
7.7. 參考文獻
8. JDM API的設計
8.1. 資料探勘概念的物件建模
8.2. 模組化套件
8.3. 連接架構
8.4. 物件工廠
8.5. 資料集的URI
8.6. 列舉型別
8.7. 例外
8.8. Di