Fuzzy Modeling and genetic algorithms for data mining and exploration (Paperback)
暫譯: 模糊建模與遺傳演算法在資料探勘與探索中的應用 (平裝本)
Earl Cox
- 出版商: Morgan Kaufmann
- 出版日期: 2005-01-01
- 售價: $3,370
- 貴賓價: 9.5 折 $3,202
- 語言: 英文
- 頁數: 530
- 裝訂: Paperback
- ISBN: 0121942759
- ISBN-13: 9780121942755
-
相關分類:
Algorithms-data-structures、Data-mining
下單後立即進貨 (約2~3週)
買這商品的人也買了...
-
$660$627 -
$980$931 -
$1,539The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
$760$600 -
$590$466 -
$680$537 -
$750$638 -
$560$476 -
$480$379 -
$750$593 -
$490$382 -
$450$356 -
$690$538 -
$480$379 -
$600$199 -
$4,620$4,389 -
$650$507 -
$550$468 -
$780$741 -
$480$432 -
$300$270 -
$2,610$2,480 -
$2,270$2,157 -
$300$270 -
$650$553
商品描述
Description:
Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration is a handbook for analysts, engineers, and managers involved in developing data mining models in business and government. As you’ll discover, fuzzy systems are extraordinarily valuable tools for representing and manipulating all kinds of data, and genetic algorithms and evolutionary programming techniques drawn from biology provide the most effective means for designing and tuning these systems.
You don’t need a background in fuzzy modeling or genetic algorithms to benefit, for this book provides it, along with detailed instruction in methods that you can immediately put to work in your own projects. The author provides many diverse examples and also an extended example in which evolutionary strategies are used to create a complex scheduling system.
Table of Contents:
Preface
Acknowledgements
Introduction
PART ONE – CONCEPTS AND ISSUES
Chapter 1. FOUNDATIONS AND IDEAS
1.1 Enterprise Applications and Analysis Models
1.2 Distributed and Centralized Repositories
1.3 The Age of Distributed Knowledge
1.4 Information and Knowledge Discovery
1.5 Data Mining and Business Models
1.6 Fuzzy Systems for Business Process Models
1.7 Evolving Distributed Fuzzy Models
1.8 A Sample Case – Evolving a Model for Customer Segmentation
Review
Chapter 2. PRINCIPAL MODEL TYPES
2.1 Model and Event State Categorization
2.2 Model Type and Outcome Categorization
Review
Chapter 3. APPROACHES TO MODEL BUILDING
3.1 Ordinary Statistics.
3.2 Non-Parametric Statistics
3.3 Linear Regression In Statistical Models
3.4 Non-Linear Growth Curve Fitting
3.5 Cluster Analysis
3.6 Decision Trees and Classifiers
3.7 Neural Networks
3.8 Fuzzy SQL Systems
3.9 Rule Induction and Dynamic Fuzzy Models
Review
References
PART TWO – FUZZY SYSTEMS
Chapter 4. FUNDAMENTAL CONCEPTS OF FUZZY LOGIC
4.1 The Vocabulary of Fuzzy Logic
4.2 Boolean (Crisp) Sets – The Law of Bivalence
4.3 Fuzzy Sets
Review
Chapter 5. FUNDAMENTAL CONCEPTS OF FUZZY SYSTEMS
5.1 The Vocabulary of Fuzzy Systems
5.2 Fuzzy Rule-Based Systems – An Overview
5.3 Fuzzy Rules
5.4 Variable Decomposition Into Fuzzy Sets
5.5 A Fuzzy Knowledge Base – The Details
5.6 The Fuzzy Inference Engine
5.7 Inference Engine Approaches
5.8 Running A Fuzzy Model
Review
Chapter 6. FUZZYSQL AND INTELLIGENT QUERIES
6.1 The Vocabulary of Relational Databases and Queries
6.2 Basic Relational Database Concepts
6.3 Structured Query Language Fundamentals
6.4 Precision and Accuracy
6.5 Why do we search a database?
6.6 Expanding the Query Scope
6.7 Fuzzy Query Fundamentals
6.8 Measuring Query Compatibility
6.9 Complex Query Compatibility Metrics
6.10 Compatibility Threshold Management
6.11 FuzzySQL Process Flow
6.12 FuzzySQL Example
6.13 Evaluating the FuzzySQL Outcomes
Review
References
Chapter 7. FUZZY CLUSTERING
7.1 The Vocabulary of Fuzzy Clustering
7.2 Principles of Cluster Detection
7.3 Some General Clustering Concepts
7.4 Crisp Clustering Techniques
7.5 Fuzzy Clustering Concepts
7.6 Fuzzy c-Means Clustering
7.7 Fuzzy Adaptive Clustering
7.8 Generating Rule Prototypes
Review
References
Chapter 8. FUZZY RULE INDUCTION
8.1 The Vocabulary of Rule Induction
8.2 Rule Induction and Fuzzy Models
8.3 The Rule Induction Algorithm
8.4 The Model Building Methodology
8.5 A Rule Induction and Model Building Example
8.6 Measuring Model Robustness
Review
References
Technical Implementation
External Controls
Organization of the Knowledge Base
Executing A Fuzzy Rule
PART THREE – EVOLUTIONARY STRATEGIES
Chapter 9. FUNDAMENTAL CONCEPTS OF GENETIC ALGORITHMS
9.1 The Vocabulary of Genetic Algorithms
9.2 Overview
9.3 The Architecture of a Genetic Algorithm
Review
References
Chapter 10. GENETIC RESOURCE SCHEDULING OPTIMIZATION
10.1 The Vocabulary of Resource-Constrained Scheduling
10.2 Some Terminology Issues
10.3 Fundamentals
10.4 Objective Functions and Constraints
10.5 Bringing It All Together – Constraint Scheduling
10.6 A Genetic Crew Scheduler Architecture
10.7 Implementing and Executing the Crew Scheduler
10.8 Topology Constraint Algorithms and Techniques
10.9 Adaptive Parameter Optimization
Review
References
Chapter 11. GENETIC TUNING OF FUZZY MODELS
11.1 The Genetic Tuner Process
11.2 Configuration Parameters
11.3 Implementing and Running the Genetic Tuner
11.4 Advanced Genetic Tuning Issues
Review
References
商品描述(中文翻譯)
描述:
《模糊建模與遺傳演算法在資料探勘與探索中的應用》是一本為分析師、工程師和管理者所編寫的手冊,旨在協助他們在商業和政府中開發資料探勘模型。正如您將發現的,模糊系統是表示和操作各種數據的極其有價值的工具,而來自生物學的遺傳演算法和進化編程技術則提供了設計和調整這些系統的最有效手段。
您不需要具備模糊建模或遺傳演算法的背景即可受益,因為本書提供了相關知識,並詳細說明了您可以立即在自己的項目中應用的方法。作者提供了許多不同的範例,還有一個擴展範例,其中使用進化策略來創建一個複雜的排程系統。
目錄:
前言
致謝
介紹
第一部分 – 概念與議題
第一章. 基礎與理念
1.1 企業應用與分析模型
1.2 分散式與集中式資料庫
1.3 分散知識的時代
1.4 資訊與知識發現
1.5 資料探勘與商業模型
1.6 用於商業流程模型的模糊系統
1.7 演變的分散式模糊模型
1.8 一個範例案例 – 演變客戶分群模型
回顧
第二章. 主要模型類型
2.1 模型與事件狀態分類
2.2 模型類型與結果分類
回顧
第三章. 模型建構方法
3.1 普通統計
3.2 非參數統計
3.3 統計模型中的線性回歸
3.4 非線性增長曲線擬合
3.5 聚類分析
3.6 決策樹與分類器
3.7 神經網絡
3.8 模糊 SQL 系統
3.9 規則歸納與動態模糊模型
回顧
參考文獻
第二部分 – 模糊系統
第四章. 模糊邏輯的基本概念
4.1 模糊邏輯的詞彙
4.2 布林(清晰)集合 – 二值法則
4.3 模糊集合
回顧
第五章. 模糊系統的基本概念
5.1 模糊系統的詞彙
5.2 基於模糊規則的系統 – 概述
5.3 模糊規則
5.4 將變數分解為模糊集合
5.5 模糊知識庫 – 詳情
5.6 模糊推理引擎
5.7 推理引擎方法
5.8 運行模糊模型
回顧
第六章. FuzzySQL 與智能查詢
6.1 關聯資料庫與查詢的詞彙
6.2 基本關聯資料庫概念
6.3 結構化查詢語言基礎
6.4 精確度與準確性
6.5 我們為什麼要查詢資料庫?
6.6 擴展查詢範圍
6.7 模糊查詢基礎
6.8 測量查詢相容性
6.9 複雜查詢相容性指標
6.10 相容性閾值管理
6.11 FuzzySQL 流程
6.12 FuzzySQL 範例
6.13 評估 FuzzySQL 的結果
回顧
參考文獻
第七章. 模糊聚類
7.1 模糊聚類的詞彙
7.2 聚類檢測原則
7.3 一些一般聚類概念
7.4 清晰聚類技術
7.5 模糊聚類概念
7.6 模糊 c-均值聚類
7.7 模糊自適應聚類
7.8 生成規則原型
回顧
參考文獻
第八章. 模糊規則歸納
8.1 規則歸納的詞彙
8.2 規則歸納與模糊模型
8.3 規則歸納演算法
8.4 模型建構方法論
8.5 規則歸納與模型建構範例
8.6 測量模型穩健性
回顧
參考文獻
技術實作
外部控制
知識庫組織
執行模糊規則
第三部分 – 進化策略
第九章. 遺傳演算法的基本概念
9.1 遺傳演算法的詞彙
9.2 概述
9.3 遺傳演算法的架構
回顧
參考文獻
第十章. 資源受限排程的遺傳優化
10.1 資源受限排程的詞彙
10.2 一些術語問題
10.3 基礎
10.4 目標函數與約束條件
10.5 將所有內容整合 – 約束排程
10.6 遺傳人員排程器架構
10.7 實作與執行人員排程器
10.8 拓撲約束演算法與技術
10.9 自適應參數優化
回顧
參考文獻
第十一章. 模糊模型的遺傳調整
11.1 遺傳調整過程
11.2 配置參數
11.3 實作與運行遺傳調整器
11.4 進階遺傳調整問題
回顧
參考文獻