Fourier Series and Boundary Value Problems, 8/e (Paperback)
暫譯: 傅立葉級數與邊界值問題,第8版(平裝本)

Ruel V Churchill Prof

買這商品的人也買了...

相關主題

商品描述

Published by McGraw-Hill since its first edition in 1941, this classic text is an introduction to Fourier series and their applications to boundary value problems in partial differential equations of engineering and physics. It will primarily be used by students with a background in ordinary differential equations and advanced calculus.

 There are two main objectives of this text. The first is to introduce the concept of orthogonal sets of functions and representations of arbitrary functions in series of functions from such sets. The second is a clear presentation of the classical method of separation of variables used in solving boundary value problems with the aid of those representations.

 The book is a thorough revision of the seventh edition and much care is taken to give the student fewer distractions when determining solutions of eigenvalue problems, and other topics have been presented in their own sections like Gibbs' Phenomenon and the Poisson integral formula

商品描述(中文翻譯)

自1941年首次出版以來,由McGraw-Hill出版的這本經典教材是傅立葉級數及其在工程和物理的偏微分方程邊界值問題中的應用的入門書籍。主要供具有常微分方程和高等微積分背景的學生使用。

這本書有兩個主要目標。第一個是介紹正交函數集的概念,以及如何用這些函數集的級數表示任意函數。第二個是清晰地呈現經典的變數分離法,這種方法在利用這些表示法解決邊界值問題時非常有用。

本書是第七版的全面修訂,特別注意減少學生在確定特徵值問題解的過程中的干擾,並且其他主題如吉布斯現象和泊松積分公式已被獨立成章節呈現。

目錄大綱

Chapter 1 Fourier Series
Chapter 2 Convergence of Fourier Series
Chapter 3 Partial Differential Equations of Physics
Chapter 4 The Fourier Method
Chapter 5 Boundary Value Problems
Chapter 6 Fourier Integrals and Applications
Chapter 7 Orthonormal Sets
Chapter 8 Sturm-Liouville Problems and Applications
Chapter 9 Bessel Functions and Applications
Chapter 10 Legendre Polynomials and Applications
Chapter 11 Verification of Solutions and Uniqueness

目錄大綱(中文翻譯)

Chapter 1 Fourier Series

Chapter 2 Convergence of Fourier Series

Chapter 3 Partial Differential Equations of Physics

Chapter 4 The Fourier Method

Chapter 5 Boundary Value Problems

Chapter 6 Fourier Integrals and Applications

Chapter 7 Orthonormal Sets

Chapter 8 Sturm-Liouville Problems and Applications

Chapter 9 Bessel Functions and Applications

Chapter 10 Legendre Polynomials and Applications

Chapter 11 Verification of Solutions and Uniqueness