Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, 2/e (Hardcover)
暫譯: 數據驅動的科學與工程:機器學習、動態系統與控制,第二版(精裝本)
Steven L. Brunton
- 出版商: Camberidge
- 出版日期: 2022-05-05
- 售價: $2,275
- 貴賓價: 9.5 折 $2,161
- 語言: 英文
- 頁數: 614
- ISBN: 1009098489
- ISBN-13: 9781009098489
-
相關分類:
Machine Learning
立即出貨
買這商品的人也買了...
-
$280$140 -
$1,500$1,470 -
$1,617Deep Learning (Hardcover)
-
$3,380$3,211 -
$500$390 -
$1,680$1,646 -
$2,280$2,166 -
$709遷移學習 -- TRANSFER LEARNING (楊強教授新作)
-
$760$745 -
$1,480Interpretable Machine Learning with Python: Learn to build interpretable high-performance models with hands-on real-world examples (Paperback)
-
$654$621 -
$570$542 -
$1,000$790 -
$459科學之路:人、機器與未來
-
$1,200$948 -
$1,780$1,744 -
$2,650$2,597 -
$1,200$948 -
$2,835Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3/e (Paperback)
-
$780$608 -
$680$537 -
$3,480$3,306 -
$1,680$1,596 -
$2,250$2,138 -
$750$675
相關主題
商品描述
Review
'Finally, a book that introduces data science in a context that will make any mechanical engineer feel comfortable. Data science is the new calculus, and no engineer should graduate without a thorough understanding of the topic.' Hod Lipson, Columbia University
'This book is a must-have for anyone interested in data-driven modeling and simulations. The readers as diverse as undergraduate STEM students and seasoned researchers would find it useful as a guide to this rapidly evolving field. Topics covered by the monograph include dimension reduction, machine learning, and robust control of dynamical systems with uncertain/random inputs. Every chapter contains codes and homework problems, which make this treaties ideal for the classroom setting. The book is supplemented with online lectures, which are not only educational but also entertaining to watch.' Daniel M. Tartakovsky, Stanford University
'Engineering principles will always be based on physics, and the models that underpin engineering will be derived from these physical laws. But in the future models based on relationships in large datasets will be as important and, when used alongside physics-based models, will lead to new insights and designs. Brunton and Kutz will equip students and practitioners with the tools they will need for this exciting future.' Greg Hyslop, Boeing
'Brunton and Kutz's book is fast becoming an indispensable resource for machine learning and data-driven learning in science and engineering. The second edition adds several timely topics in this lively field, including reinforcement learning and physics-informed machine learning. The text balances theoretical foundations and concrete examples with code, making it accessible and practical for students and practitioners alike.' Tim Colonius, California Institute of Technology
'This is a must read for those who are interested in understanding what machine learning can do for dynamical systems! Steve and Nathan have done an excellent job in bringing everyone up to speed to the modern application of machine learning on these complex dynamical systems.' Shirley Ho, Flatiron Institute/New York University
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
商品描述(中文翻譯)
### 評論
「終於有一本書以機械工程師能夠輕鬆理解的背景介紹資料科學。資料科學是新的微積分,任何工程師都不應該在沒有徹底理解這個主題的情況下畢業。」霍德·利普森,哥倫比亞大學
「這本書是任何對數據驅動建模和模擬感興趣的人的必備書籍。從本科 STEM 學生到資深研究人員,讀者都會發現它作為這個快速發展領域的指南非常有用。這本專著涵蓋的主題包括降維、機器學習以及對具有不確定/隨機輸入的動態系統的穩健控制。每一章都包含代碼和作業問題,使這本書非常適合用於課堂教學。書中還附有在線講座,不僅具有教育意義,觀看起來也很有趣。」丹尼爾·M·塔塔科夫斯基,斯坦福大學
「工程原則將始終基於物理學,而支撐工程的模型將源自這些物理法則。但在未來,基於大型數據集中的關係的模型將同樣重要,並且當與基於物理的模型一起使用時,將帶來新的見解和設計。布倫頓和庫茨將為學生和從業者提供他們在這個令人興奮的未來所需的工具。」格雷格·海斯洛普,波音公司
「布倫頓和庫茨的書籍正迅速成為科學和工程中機器學習和數據驅動學習的不可或缺的資源。第二版增加了幾個在這個活躍領域中的及時主題,包括強化學習和物理知識機器學習。這本書在理論基礎和具體示例之間取得了平衡,並附有代碼,使其對學生和從業者都易於理解和實用。」蒂姆·科洛尼烏斯,加州理工學院
「這是一本必讀的書,適合那些想了解機器學習對動態系統能做什麼的人!史蒂夫和內森在讓每個人跟上機器學習在這些複雜動態系統上的現代應用方面做得非常出色。」雪莉·霍,弗拉特艾倫研究所/紐約大學
### 書籍描述
一本教科書,涵蓋用於工程和科學建模與控制的資料科學和機器學習方法,使用 Python 和 MATLAB®。