Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists
暫譯: 機器學習的特徵工程:數據科學家的原則與技術
Alice Zheng, Amanda Casari
- 出版商: O'Reilly
- 出版日期: 2018-05-08
- 定價: $2,360
- 售價: 8.0 折 $1,888
- 語言: 英文
- 頁數: 218
- 裝訂: Paperback
- ISBN: 1491953241
- ISBN-13: 9781491953242
-
相關分類:
Machine Learning
-
相關翻譯:
精通特徵工程 (Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists) (簡中版)
機器學習|特徵工程 (Feature Engineering for Machine Learning) (繁中版)
立即出貨
買這商品的人也買了...
-
Introduction to Algorithms, 3/e (IE-Paperback)$1,590$1,558 -
Operating System Concepts, 9/e (IE-Paperback)$1,680$1,646 -
$1,617Deep Learning (Hardcover) -
Practical Statistics for Data Scientists: 50 Essential Concepts$1,760$1,672 -
$1,332Thoughtful Machine Learning with Python: A Test-Driven Approach -
Mobile SmartLife via Sensing, Localization, and Cloud Ecosystems$4,480$4,256 -
$990Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback) -
優化 C++|提高程式效能的有效技術 (Optimized C++: Proven Techniques for Heightened Performance)$680$537 -
認識資料科學的第一本書 (Data Analytics Made Accessible)$450$356 -
Advances in Financial Machine Learning (Hardcover)$1,900$1,805 -
$2,070Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning -
人工智能基礎 (高中版)$210$200 -
Digital Signal Processing 101, Second Edition: Everything You Need to Know to Get Started$2,275$2,161 -
實用 C 語言程式設計入門$490$417 -
Deep Learning 深度學習基礎|設計下一代人工智慧演算法 (Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms)$620$490 -
Unity 行動遊戲開發實務 (Mobile Game Development with Unity: Build Once, Deploy Anywhere)$580$458 -
用 Python 學程式設計運算思維 (收錄 MTA Python 微軟國際認證模擬試題)$420$332 -
實戰機器學習|以深度學習演算企業資料$450$383 -
$1,715Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib Second Edition -
Feature Engineering and Selection: A Practical Approach for Predictive Models (Hardcover)$3,920$3,724 -
機器學習工程師面試全破解:嚴選 124道 AI 演算法決勝題完整剖析$650$507 -
人類智慧的神殿:AI知識圖譜實作$890$703 -
機器學習|特徵工程 (Feature Engineering for Machine Learning)$520$411 -
圖解 AI|機器學習和深度學習的技術與原理$450$356 -
Data Science on AWS: Implementing End-To-End, Continuous AI and Machine Learning Pipelines (Paperback)$2,575$2,439
商品描述
Feature engineering is essential to applied machine learning, but using domain knowledge to strengthen your predictive models can be difficult and expensive. To help fill the information gap on feature engineering, this complete hands-on guide teaches beginning-to-intermediate data scientists how to work with this widely practiced but little discussed topic.
Author Alice Zheng explains common practices and mathematical principles to help engineer features for new data and tasks. If you understand basic machine learning concepts like supervised and unsupervised learning, you’re ready to get started. Not only will you learn how to implement feature engineering in a systematic and principled way, you’ll also learn how to practice better data science.
- Learn exactly what feature engineering is, why it’s important, and how to do it well
- Use common methods for different data types, including images, text, and logs
- Understand how different techniques such as feature scaling and principal component analysis work
- Understand how unsupervised feature learning works in the case of deep learning for images
商品描述(中文翻譯)
特徵工程對於應用機器學習至關重要,但利用領域知識來增強預測模型可能會很困難且成本高昂。為了填補特徵工程的資訊空白,這本完整的實作指南教導初學到中階的資料科學家如何處理這個廣泛實踐但鮮少討論的主題。
作者 Alice Zheng 解釋了常見的實踐和數學原則,以幫助為新數據和任務工程特徵。如果您了解基本的機器學習概念,如監督式學習和非監督式學習,那麼您已經準備好開始了。您不僅會學習如何以系統化和原則性的方式實施特徵工程,還會學習如何更好地實踐資料科學。
- 瞭解特徵工程究竟是什麼、為什麼重要以及如何做好
- 使用針對不同數據類型的常見方法,包括圖像、文本和日誌
- 理解特徵縮放和主成分分析等不同技術的運作方式
- 理解在圖像深度學習中,非監督式特徵學習的運作方式
